Parabolen komen regelmatig voor. Wel moet je daarbij vaak uitgaan van ideale omstandigheden die in de praktijk niet precies gelden. Voorbeelden zijn:
de baan van een voorwerp dat wordt afgeschoten en daarna beweegt onder invloed van de zwaartekracht (als de luchtweerstand geen rol van betekenis speelt);
de hoogte van een voorwerp dat wordt afgeschoten en daarna beweegt onder invloed van de zwaartekracht (als de luchtweerstand geen rol van betekenis speelt) afhankelijk van de tijd;
de boog die de kabels van een hangbrug maken als die brug met behulp van zogenaamde tuidraden aan de kabels is opgehangen.
Afhankelijk van de omstandigheden (de kracht waarmee het voorwerp wordt afgeschoten, de afmetingen van de hangbrug) kun je bij die parabolen formules maken waarmee je dan weer berekeningen kunt uitvoeren.
In een experiment wordt vanaf een meter hoge toren een tennisbal afgeschoten die uiteindelijk zal neerkomen op het plein voor deze toren. De baan die de kogel volgt wordt gefilmd en met behulp van een computerprogramma wordt de baan van de bal berekend. De hoogte van de tennisbal boven de grond wordt bij benadering gegeven voor de formule , waarin de hoogte van de bal boven de begane grond in meters en de afstand van het punt op de grond recht onder de plaats van afschieten en het punt op de grond recht onder de bal is. Ook is in m.
Waaraan kun je zien dat deze tennisbal nogal steil omhoog wordt geschoten?
Hoe hoog boven de grond komt deze tennisbal maximaal?
Hoeveel m vanaf het punt op de grond recht onder het afschietpunt komt de bal weer op de grond?
Je ziet hier een hangbrug. Het wegdek is tussen beide torens m lang. De ophangpunten van de kabels zitten aan de buitenkant van de torens op m boven het wegdek. De kortste van de tuidraden is m lang.
Je ziet één van beide kabels. Hij hangt in de vorm van een parabool. Neem aan dat de -as samenvalt met het wegdek en de -as over de kortste tuidraad loopt. Neem aan dat de eenheden op beide assen in m zijn.
De formule van de bijbehorende kwadratische functie is dan .
Ga na dat de parabool bij deze formule past bij de tekening van de hangbrug.
Hoelang is de negentiende tuidraad gezien vanaf de linker toren?