Statistiek > Centrum en spreiding
123456Centrum en spreiding

Antwoorden van de opgaven

Opgave V1
a

Beide gemiddelden zijn 6,4.

b

Sven is veel constanter, Thijmen wisselt erg in zijn resultaten. Je zou dus kunnen zeggen dat Sven het beter gedaan heeft. Maar voor een paar repetities scoort Thijmen erg hoog, je kunt dus ook zeggen dat Thijmen het beter heeft gedaan.

Opgave 1
a

Sven: 6,4.
Thijmen: 3,5.

b

Sven: 6,4.
Thijmen: 6,3.

c

Omdat er weinig cijfers zijn zegt de modus niks nuttigs, dat daar bijvoorbeeld bij Thijmen een 3,5 uitkomt ligt puur aan het feit dat hij bij toeval twee keer dat resultaat heeft behaald.
En eigenlijk geldt voor de mediaan hetzelfde, dat getal is alleen een mooie opstap voor het maken van een boxplot.

Opgave 2
a

Sven: 6,5 - 6,3 = 0,2 .
Thijmen: 9,3 - 3,5 = 5,8 .

b

Sven: 6,4.
Thijmen: 6,3.

c

Omdat er weinig cijfers zijn zegt de modus niks nuttigs, dat daar bijvoorbeeld bij Thijmen een 3,5 uitkomt ligt puur aan het feit dat hij bij toeval twee keer dat resultaat heeft behaald.
En eigenlijk geldt voor de mediaan hetzelfde, dat getal is alleen een mooie opstap voor het maken van een boxplot.

Opgave 3
a

Zie tabel.

klasse klassenmidden Sven Thijmen
2,5 - < 3,5 3 0 0
3,5 - < 4,5 4 0 2
4,5 - < 5,5 5 0 1
5,5 - < 6,5 6 6 2
6,5 - < 7,5 7 3 1
7,5 - < 8,5 8 0 0
8,5 - < 9,5 9 0 3
b

Werk met de klassenmiddens. De afwijking met het werkelijke gemiddelde ontstaat doordat je nu met afgeronde cijfers werkt.

Sven: ongeveer 6,3.
Thijmen: ongeveer 6,6.

c

Bij Sven is dat een 6 bij Thijmen een uitschieter 9.

d

Bij Sven is dat een spreidingsbreedte van 7,5 - 5,5 = 2 bij Thijmen van 9,5 - 3,5 = 6 .

Opgave 4
a

Zie het voorbeeld. Een frequentietabel van de cijfers op één decimaal is zinloos omdat ze voor het grootste deel dezelfde frequentie 1 hebben.

b

Van de gehele cijfers is dat 6,74 en van de cijfers op één decimaal is dat 6,70.

c

Bij de gehele cijfers zijn er duidelijke verschillen in de frequenties en zit er een patroon in, bij de cijfers op één decimaal niet. Het modale cijfer is een 6.

d

De mediaan is 7, de kwartielen zijn Q 1 = 6 en Q 3 = 8 en maximum en minimum zijn 4 en 9.

Maak het boxplot van de cijfers op één decimaal in Excel.

Opgave 5
a

Elk cijfer is afgerond op een geheel cijfer. Het gaat dus om klassen als 5,5 - < 6,5 , etc.

b

Het gaat nu om klassen als 5,35 - < 5,45 , etc.

Opgave 6
a

Kennelijk zijn dat er in 2011 minder dan 500 geweest.

b

Met name bij de laatste klasse zullen er veel meer mensen in de buurt van de € 50.000 zitten dan in de buurt van de 200.000.

c

Het eerste kwartiel is de waarde bij nummer 3180 . Deze zit in de klasse 10000 - < 20000 en is daarin de 690e waarde.
Dus is het eerste kwartiel 10000 + 10000 × 690 2769 12492 euro.

Het derde kwartiel is op dezelfde manier ongeveer 45667 euro.

Daarmee kun je de kwartielsafstand berekenen: 45667 - 12492 = 6825 .

Omdat het minimum 5000 en het maximum 200000 is, kun je nu het boxplot eenvoudig tekenen.

d

Het eerste kwart loopt van 5000 tot 12492 euro en is daarmee veel korter dan het vierde kwart dat loopt van 45667 tot 200000 euro. De kwarten worden van links naar rechts steeds langer.

Opgave 7
a

73092 keer.

b

De gegevens zijn kwalitatief (woorden) en niet kwantitatief (cijfers) en dan hebben mediaan en modus geen betekenis.

Opgave 8
a

( 13 × 253 + 14 × 385 + ... + 22 × 2358 ) / 36245 = 18,7 .

b

18 jaar.

c

36245 schoolverlaters, de middelste is nummer 18123, die zit in de groep 19-jarigen (want van 13 – 18 jaar zijn er 17332). De mediaan is dus 19 jaar.

d

De gemiddelde leeftijd waarop leerlingen stoppen met hun opleiding is best hoog.

Opgave 9
a

Zie tabel.


2005 - 2006 2011 - 2012
spreidingsbreedte 22 – 13 = 9 jaar 22 – 13 = 9 jaar
eerste kwartiel 17 (de 13170e) 18 (de 9061e)
tweede kwartiel 19 (de 39509e) 20 (de 27184e)
kwartielafstand 2 jaar 2 jaar
b

De spreidingsmaten bij deze gegevens zijn even groot. Toch zijn er duidelijk verschillen, de leeftijd waarop de leerlingen vroegtijdig de school verlaten wordt steeds hoger. Dit komt tot uitdrukking in de centrummaten.

Opgave 10
a

Zet eerst de jongens en de meisjes apart door op die kolom te sorteren. Maak dan een klassenindeling en een frequentietabel.

b

Je zet eerst de 11-jarigen en de 12-jarigen apart. Maak dan een klassenindeling en een frequentietabel.

Opgave 11Cijfer voor wiskunde
Cijfer voor wiskunde
a

Vergelijk je resultaten met die van de andere leerlingen.

b

Vergelijk je resultaten met die van de andere leerlingen.

c

Bekijk eventueel het Practicum .

d

Vergelijk je resultaten met die van de andere leerlingen.

Opgave 12Lengtes vergelijken
Lengtes vergelijken
a

Zorg er voor dat de staven tegen elkaar zitten.

c

Vergelijk je resultaten met die van de andere leerlingen. Zijn de jongens over het algemeen langer dan de meisjes?

Opgave 13Een eigen onderzoek
Een eigen onderzoek
a

Eigen antwoord.

b

Eigen antwoord.

c

Eigen antwoord.

verder | terug