Vlakke meetkunde > Rekenen in driehoeken
123456Rekenen in driehoeken

Voorbeeld 2

In deze figuur zijn A B en C D evenwijdig.

Bereken de lengte van C D en die van C E.

> antwoord

Omdat A = C D E (F-hoeken) en B = D C E (F-hoeken) is Δ A B E Δ D C E .

Maak nu een verhoudingstabel voor de zijden en vul getallen of onbekenden in.

A B
10 cm

B E
x + 3 cm

A E
12 cm

D C
y cm

C E
x cm

D E
8 cm

De vergrotingsfactor van Δ A B E naar Δ D C E is 8 / 12 = 2 3 .
C D = 2 3 10 = 20 3 .
Om C E te berekenen gebruik je x = 2 3 ( x + 3 ) . Hieruit volgt x = 6 en dus C E = 6 .

Opgave 5

Bekijk Voorbeeld 2. Je ziet hoe je in situaties waarin sprake is van evenwijdige lijnen gelijkvormige driehoeken kunt vinden en met behulp daarvan lengtes van lijnstukken berekenen.

a

Waarom is Δ A B E Δ D C E ?

b

Leg uit waarom D E = 8 .

c

Laat zien, dat inderdaad C E = 6 .

Opgave 6

In deze figuur is A B / / D E . De gegeven lengtes zijn in cm.

a

Waarom is Δ A B C Δ A D E ?

b

Bereken de lengte van D E en van A E .

Opgave 7

In deze figuur is A B / / D E . De gegeven lengtes zijn in cm.

a

Vul aan Δ A B C ... en leg uit waarom deze driehoeken gelijkvormig zijn.

b

Bereken de lengte van D E en van A C .

verder | terug