Om en . De invoervariabele is .
Je schat eerst welke -waarde het snijpunt van beide grafieken heeft, want in het snijpunt hebben beide formules dezelfde uitkomst. Vervolgens ga je nauwkeurige tabellen maken rond die -waarde.
Maak een inklemtabel. Je vindt .
Je krijgt vaak geen exacte oplossing. En een nog veel groter nadeel is dat je vaak niet zeker weet of je ook echt alle waarden hebt gevonden die bij de oplossing horen. Er kunnen wel snijpunten zijn die in jouw figuur niet te zien zijn.
Om en . Je schets is een bergparabool met top `(40; 1,5)` met een lijn erdoor die evenwijdig is aan de -as.
Een bergparabool met top en de lijn hebben twee snijpunten.
Maak voor het overzicht een rekenschema en een terugrekenschema. De oplossing van de vergelijking wordt .
Ja, dat kan. Maar het kost waarschijnlijk meer tijd en bovendien moet je daarna weer een kwadraat afsplitsen dus weer haakjes laten ontstaan...
Omdat de onbekende zowel links als rechts van het isgelijkteken voorkomt.
Maak voor het overzicht uitgebreide uitwerking waarbij je bij elke stap omschrijft wat je doet. De oplossing van de vergelijking wordt .
Omdat de de vergelijking al bestaat uit een product van twee factoren waar uit komt. En dan kun je de vergelijking direct splitsen in twee eenvoudiger vergelijkingen.
De oplossing van de vergelijking wordt .
Omdat de de vergelijking nu niet bestaat uit een product van twee factoren waar uit komt. En daarom kun je de vergelijking niet nu direct splitsen in twee eenvoudiger vergelijkingen.
Na uitwerken van de haakjes en het gebruiken van de balansmethode vind je . Deze vergelijking kun je dan weer oplossen door ontbinden in factoren of door een kwadraat af te splitsen.
De oplossing van de vergelijking wordt .
Schrijf ook nu een uitgebreide uitwerking als voorbeeld voor jezelf op. Begin met haakjes uitwerken en op herleiden. Daarna moet je ontbinden met de som-product-methode (of een kwadraat afsplitsen).
De oplossing van de vergelijking wordt .
Door aan beide zijden van het isgelijkteken met te vermenigvuldigen. LET OP: Dat mag alleen zolang .
Na de vermenigvuldiging met krijg je . Dit kun je verder oplossen door op herleiden en ontbinden.
De oplossing van de vergelijking wordt .
Bij het vermenigvuldigen heb je aangenomen dat . Je moet nog wel even nagaan dat je beide oplossingen hieraan voldoen. En dat is hier ook zo.
Maak voor elk snijpunt een inklemtabel.
en
Beide zijden vermenigvuldigen met (het kgv van de noemers) geeft .
Beide zijden vermenigvuldigen met (het kgv van de noemers) geeft .
Beide zijden vermenigvuldigen met (het kgv van de noemers) geeft .
Haakjes wegwerken geeft . Dus de totale oppervlakte van het bij de ruil betrokken land is m2 en dat is ha.
Ω.
Neem , dan vind je . Deze vergelijking oplossen geeft Ω.
Beide zijden van het isgelijkteken vermenigvuldigen met geeft en . Hieruit volgt .
Maak een schets van de situatie. Neem voor de grootste rechthoekszijde , dan is de andere rechthoekszijde en de hypotenusa .
De stelling van Pythagoras geeft .
Deze vergelijking kun je oplossen door haakjes wegwerken en ontbinden in factoren. Je vindt dan . En dan kun je de vraag beantwoorden...
Maak een schets van de situatie en kies voor de straal van de cirkel de variabele . Ga vervolgens op zoek naar een rechthoekige driehoek.
is rechthoekig met . Verder is . En dus geldt:
En daaruit volgt: dm.