Machtsfuncties > Machtsfuncties
1234567Machtsfuncties

Voorbeeld 2

Gegeven is de functie `f(x)=2 (x-4 ) ^3-10` .

Los algebraïsch op: `f(x)=20` .

Beschrijf welke transformaties er nodig zijn om vanuit `y=x^3`  tot de functie `f(x)` te komen.

> antwoord

Functie `f` kan door transformatie ontstaan uit de machtsfunctie `y_1 =x^3` . Eerst `4` verschuiven in de positieve `x` -richting (dus t.o.v. de `y` -as), dan vermenigvuldigen met `2` in de `y` -richting en tenslotte `10` verschuiven in de negatieve `y` -richting.

Om `f(x)=20` op te lossen, moet je stap voor stap terugrekenen:

`2 (x-4) ^3-10` `=` `20`
`2 (x-4) ^3` `=` `30`
`(x-4) ^3` `=` `15`
`x-4` `=` `15^ (1/3)`
`x` `=` `15^ (1/3) +4`

Je vindt dus `x=15^ (1/3) +4 ≈6,47` .

Opgave 6

Bekijk de functie `f(x)=3 (x+1 ) ^3-5` .

a

Beschrijf in de juiste volgorde welke transformaties er nodig zijn vanuit `y=x^3` om tot de functie `f(x)` te komen. Geef elke keer aan wat er met de grafiek gebeurt als je deze transformatie toepast. 

b

Los exact op: `f(x) < 10` .

verder | terug