Machtsfuncties > Afgeleide functies
1234567Afgeleide functies

Antwoorden van de opgaven

Opgave V1
a

Dit kun je op twee manieren doen.

  • Eerst de haakjes wegwerken in het functievoorschrift van :.  Dan differentiëren.

  • Je kunt ook de transformaties gebruiken, dan werk je de haakjes van de functie niet eerst weg:.

b

en geeft .

c

geeft .
Minimum .

d

De grafiek van deze functie ontstaat door transformatie uit de grafiek van . Deze basisfunctie heeft als grafiek een parabool met een minimum van . De grafiek van krijg je door de grafiek van

  • eerst met verschuiven t.o.v. de -as;

  • vervolgens met vermenigvuldigen t.o.v. de -as.

Het minumum van daarom ook .

e

Uit volgt , dus de richtingscoëfficiënt van de grafiek van voor is . Om de functie    te krijgen  wordt de grafiek van      naar links geschoven met en dan met   vermenigvuldigd t.o.v. de -as.  Daardoor wordt de helling van de grafiek keer zo steil, en wordt de richtingscoëfficiënt vermenigvuldigd met . De verschuiving heeft geen invloed op de helling.

Opgave V2
a

Je schakelt twee functies na elkaar: eerst met vermenigvuldigen en daarna worteltrekken.

b

Je kunt dit vinden door de functie in de grafische rekenmachine in de voeren en de helling van de grafiek op te vragen: .

c

Wellicht kun je dat nu nog niet, hoewel je de functie kunt herleiden. In dit onderdeel leer je hoe je dergelijke samengestelde functies kunt differentiëren zonder ze eerst te herleiden.

Opgave 1
a

Door de vermenigvuldiging t.o.v. de -as worden alle hellingwaarden met vermenigvuldigd. Ga dit ook na in de applet.

b

Haakjes wegwerken in het functievoorschrift van :.  Dan differentiëren 

c

en dit komt overeen met de waarde die je met de GR vindt: ..

Opgave 2
a

Achtereenvolgens:

  • een verschuiving van t.o.v. de -as;

  • een vermenigvuldiging met t.o.v. de -as;

  • een vermenigvuldiging met t.o.v. de -as;

  • een verschuiving van t.o.v. de -as.

b

.

c

Dit komt overeen met de waarde die je GR voor geeft.

Opgave 3
a

b

c

.

.

d

.

.

e

.

.

f

.

.

Opgave 4
a

Door:

  • verschuiving naar rechts met eenheden;

  • vermenigvuldiging t.o.v. de -as met .

b

.

.

Opgave 5
a

De transformaties:

  • Eerst translatie van ten opzichte van de -as.

  • Dan vermenigvuldiging ten opzichte van de -as met .

  • Tot slot translatie van ten opzichte van de -as.

b

Dit geeft: min. .

c

en .

De vergelijking van de raaklijn wordt .

d

Uit volgt . Dus in .

Opgave 6
a

als . Dit geeft en dus . Dit geeft min. en max..

b

heeft zelf een afgeleide van . (De notatie wordt gebruikt voor de afgeleide van een afgeleide functie.)

geeft en de grafiek van laat zien dat er van een maximum sprake is.

Je kunt dit ook beredeneren door uit te leggen dat de grafiek van een bergparabool is met top .

c

en , dus .

Opgave 7
a

Doen, vergelijk jouw antwoorden met die in het voorbeeld.

b

Je oefent met AlgebraKIT. Ga net zolang door tot je vrijwel geen fouten meer maakt.

Opgave 8
a

.

.

b

.

.

c

.

.

d

.

.

Opgave 9
a

b

c

Opgave 10
a

Eerst haakjes uitwerken: .

b

.

c

d

Opgave 11
a

voor elke waarde van behalve .

b

en ,

De raaklijn wordt  en voor krijg je .

Opgave 12
a

b

.

.

c

d

.

.

Opgave 13
a

geeft , dus .

b

Het minimum bepaal je met behulp van differentiëren. geeft . Deze vergelijking kun je alleen met behulp van de grafische rekenmachine oplossen. Je vindt . En dus is min...

c

In geldt .

: hierin moet omdat je niet mag delen door .
De afgeleide  bestaat daar niet. De raaklijn loopt in dit punt verticaal en heeft daarom de vergelijking .

Opgave 14
a

Herleid eerst tot .
Je krijgt dan .

b

.

geeft ampère. Het maximaal ontwikkelde vermogen is watt.

Opgave 15
a

y ' ( x ) = -3 x 2 + 12 x = 0 geeft x = 0 x = 4 .
M.b.v. de grafiek: min. f ( 0 ) = -10 en max. f ( 4 ) = 22

b

y ' ' ( x ) = -6 x + 12 = 0 geeft x = 2 .
Het bedoelde punt is ( 2 , 6 ) .

Opgave 16Functies met een wortel
Functies met een wortel
a

In het functievoorschrift van moet worden vervangen door  

Dit geeft  

Haakjes wegwerken geeft .

b

geeft .

geeft .

naar: examen havo wiskunde B in 2011, tweede tijdvak

Opgave 17
a

b

c

d

e

f

Opgave 18
a

b

c

Je vindt min..

d

e

.

verder | terug