Machtsfuncties > Wortelfuncties
1234567Wortelfuncties

Verwerken

Opgave 9

Los de volgende ongelijkheden algebraïsch op.

a

`16 root4 (x)≥1/2x`

b

`2 sqrt(2 x-40 )+20 < 100`

Opgave 10

Gegeven de functie `g` met `g(x)=20 x^2sqrt(x)-100` .

a

Laat zien dat `g` een machtsfunctie is.

b

Schrijf domein en bereik van `g` op.

c

Bereken algebraïsch het nulpunt van de grafiek van `g` .

d

Los op in twee decimalen nauwkeurig: `g(x)≥x` .

Opgave 11

Gegeven zijn de functies `f` en `g` met `f(x)=10/ (xsqrt(x)) +100` en `g(x)= (10 x) / (sqrt(x))` .

a

Beide functies zijn machtsfuncties. Verklaar op grond van de exponent van deze machtsfunctie waarom de grafiek van `f` altijd dalend en die van `g` stijgend is.

b

Los op in twee decimalen nauwkeurig: `f(x)≥g(x)` .

Opgave 12

Gegeven is de functie `f` met `f(x)=40 - 10sqrt(12-2x)` .

a

Laat zien dat `f` een machtsfunctie is.

b

Bepaal exact de snijpunten van de grafiek van `f` met de beide assen.

c

Schrijf domein en bereik van `f` op.

d

Los algebraïsch op in twee decimalen nauwkeurig: `f(x)≥10x` .

e

Stel met behulp van differentiëren een vergelijking op van de raaklijn aan de grafiek van `f` die evenwijdig loopt met de lijn `y = 10x` .

Opgave 13

De functie `f` met `f(x) = x - sqrt(5x)` heeft een minimum.

a

Bereken de exacte waarde van dit minimum.

b

De raaklijn aan de grafiek van `f` in zijn snijpunt met de `x` -as snijdt de `y` -as in punt `P` . Bereken de coördinaten van `P` .

Opgave 14

De functies `f` en `g` zijn gegeven door `f(x)=sqrt(8x-4)` en `g(x)=x^2+1` .
De grafieken van `f` en `g` hebben het punt `(1, 2)` gemeenschappelijk. 

a

Plot de grafieken. Neem als interval `[text(-)3, 3]xx[0, 6]` .
Toon op algebraïsche wijze aan dat in dit punt de hellingen van de grafieken `f` en `g` gelijk zijn.

b

De horizontale lijn met vergelijking `y=3` snijdt de grafiek van `f` in het punt `A` en de grafiek van `g` in de punten `B` en `C` .

Bereken exact de lengte van lijstuk `AC` .

bron: pilotexamen 2013-I

verder | terug