Periodieke functies > Sinusoïde als model
1234567Sinusoïde als model

Voorbeeld 3

Als je een cilinder met een diameter van cm over het cirkeloppervlak dwars door het midden snijdt en vervolgens openknipt en plat neerlegt, krijg je de afgebeelde figuur. De bovenrand is een zuivere sinusoïde.

Stel voor deze rand een formule op. Neem aan dat punt de coördinaten heeft.

> antwoord

De assen volgen uit de figuur.
Bepaal vervolgens:

  • de evenwichtsstand is

  • de amplitude is

  • de periode is

Het maximum zit halverwege de bovenrand bij .
Ten opzichte van de cosinus is de horizontale verschuiving .
De formule wordt: met domein .

Opgave 7

Gebruik de cilinder uit Voorbeeld 3.

a

Stel voor de bovenrand een formule op uitgaande van .

b

Waarom is de periode ?

c

De lijn snijdt de sinusoïde uit het voorbeeld in de punten en .
Bereken exact de lengte van lijnstuk .

Een lijn evenwijdig aan snijdt de bovenrand in en . Gegeven is cm. Bepaal de coördinaten van en .

verder | terug