Veranderingen > Totaalbeeld
123456Totaalbeeld

Antwoorden van de opgaven

Opgave 1
a

b

Bijvoorbeeld .

c

d

Zo'n hellingsgrafiek kun je met je GR tekenen.
Voer in Y1=X^3-3X^2-9X en Y2=(Y1(X+0.001)-Y1(X))/(0.001) en je krijgt een goede benadering ervan.

e

Zoek de nulpunten van de hellingsfunctie. Je vindt: min. en max. .

Opgave 2
a

Op meter hoogte.

b

GR: Y1=60X-5X^2 en Y2=Y1(X+1)-Y1(X) en bekijk de tabel met toenames.

c

m/s.

d

m/s.

e

GR: Y1=60X-5X^2 en Y2=(Y1(X+0.001)-Y1(X))/0.001 en bekijk de tabel met (benaderde) hellingsgetallen.
Plot de grafiek van Y2.

f

, dus de snelheid op het moment van ontploffen is m/s.

Opgave 3
a

Met mensen.

b

In 2019.

c

jaartal

migratiesaldo

geboorteoverschot

toename totaal

aantal inwoners

2015
2016
2017
2018
2019
2020
d

inwoners.

Opgave 4
a
b

In het vijfde jaar is de toename van het aantal kilogram vis het grootst ( kg).
Als de viskweker vijf jaar wacht is er  kg vis en hij kan dan jaarlijks  kg vis vangen, precies de toename in dat vijfde jaar. Zo houdt hij steeds tussen de en de  kg vis.

(bron: examen wiskunde A vwo in 1989, eerste tijdvak)

Opgave 5Suikerbieten
Suikerbieten
a

euro.

b

GR: Y1=-(1/3)X^3+6X^2 en Y2=Y1(X)−Y1(X−1)
De boer zal bietenwieders in dienst nemen.

c

De 6e en de 7e bietenwieder hebben de hoogste meeropbrengst en brengen dus het meeste binnen tegen dezelfde loonkosten.

Opgave 6Daglengte
Daglengte
a

September/oktober en maart/april; de grafiek is daar het steilst.

b

Ja, in dezelfde maanden. Dit heeft te maken met de plaats van Nederland op Aarde en het feit dat de Aardas niet loodrecht staat op het vlak waarin de baan van de Aarde om de Zon ligt.

c

Je neemt het verschil van het tijdstip van zonsopkomst en zonsondergang.

d

In juli, augustus en een deel van september.

e

Zie figuur.

f

In dezelfde maanden als zonsopkomst en zonsondergang.

g

In juni/juli en in december/januari. Toenames vrijwel .

h

In augustus/september. Grote afnames (negatieve toenames).

Opgave 7Snelheid, versnelling
Snelheid, versnelling
a

Het wordt de grafiek van als je uitgaat van een afgelegde weg van op .

b

want de grafiek van is een rechte lijn met een richtingscoëfficiënt van .

c

De versnelling.

d

Opgave 8Woestijnhagedis
Woestijnhagedis
a

Lees uit de grafiek af dat de hagedis actief is tussen ongeveer 7:30 uur en 8:00 uur 's morgens en tussen 18:00 uur en 18:30 uur 's avonds. Dus in totaal ongeveer 1 uur.

b

Ongeveer 40 5 = 8  °C/uur.

c

Zie figuur.

d

Rond 12:00 uur.

(bron: examen wiskunde A havo 1996, tweede tijdvak, aangepast)

Opgave 9Schoon drinkwater
Schoon drinkwater
a

In 1975: T 1540 mld liter per dag en B 215 miljoen.
Per inwoner gemiddeld ongeveer 7163 liter per dag, dus per jaar 365 7163 2600000 liter per inwoner.

b

In 1950: 625 700 100 89,3 %.
In 1980: 1525 1680 100 90,8 % (het getal 1525 vind je door bij de hoeveelheid in 1950 alle toenames op te tellen)

c

Tussen 1525 + 6 110 = 2185 en 1525 + 6 200 = 2725 mld liter per dag.

(bron: examen wiskunde A havo 1993, eerste tijdvak)

Opgave 10Roofdieren
Roofdieren
a

Je kunt in de grafiek aflezen dat het roofdier na  uur ee heeft gevangen. De dubbele hoeveelheid van ee kun je aflezen bij uur.

De tweede portie van ee heeft het roofdier dus uur gekost, maal zoveel tijd als de eerste portie.

b

De stippellijn gaat door de oorsprong en punt . Omdat punt op deze stippellijn ligt, is de gemiddelde voedselopbrengst bij punt hetzelfde als bij punt en dus ee/uur.

c

De lijn vanuit met de steilste helling die nog raakt aan de grafiek geeft het punt met de hoogste gemiddelde opbrengst.

Na het tekenen van deze lijn vind je uur.

d

Voer in: Y1=4/(sqrt(X-1)) en Y2=(Y1(X+0.001)-Y1(X))/(0.001).

Venster bijvoorbeeld: en .

  • De hellingsfunctie is overal positief (voor ) dus de grafiek van de voedselopbrengst stijgt naarmate groter wordt.

  • De hellingsfunctie daalt dus de toename van de voedselopbrengst neemt af naarmate groter wordt.

(bron: vwo wiskunde A examen 2006, eerste tijdvak)

verder | terug