Kansen en tellen > Permutaties en combinaties
123456Permutaties en combinaties

Antwoorden van de opgaven

Opgave V1
a

b

.
Zie de .

Opgave 1
a

b

Zie het practicum.

c

Opgave 2
a
b

Opgave 3
a

Dit is een variatie van vijf uit twintig personen. Het geslacht van de personen maakt niet uit. De opdrachten verschillen. Dus het kan op manieren.

b

manieren.

Opgave 4

Dit is een combinatie van vijf uit twintig personen, omdat de opdrachten pas na de loting onderling verdeeld worden. Het geslacht van de personen maakt niet uit. Dus het kan op manieren.

Opgave 5
a

b

c

In totaal manieren.

Opgave 6
a

b

c

d

Er zijn verschillende manieren om drie van de zeven schakelaars te kiezen om aan te zetten. Bij elk van deze keuzes blijven telkens vier verschillende schakelaars van de zeven over die niet aangezet zijn. Daarom geldt .

e

.

f

Als je wilt weten op hoeveel manieren je zeven schakelaars aan of uit kunt zetten, kun je zoals bij e redeneren. Maar je kunt ook bedenken dat je voor elke schakelaar mogelijkheden hebt, en dat het totaal aantal dus is.

Opgave 7
a

manieren.

b

manieren.

c

Opgave 8
a

Bij de zesde stap ga je omhoog, dus het antwoord is "nee".

b

c

d

Opgave 9

Elke wedstrijd is een greep van twee spelers uit de waarbij de volgorde niet van belang is. Er zijn dus wedstrijden te spelen.

Opgave 10
a

De uitkomst is , , , , of keer kop. Er zijn dus zes mogelijkheden.

b

mogelijke worpen.

c

Bij b heb je bepaald hoeveel gunstige uitkomsten er zijn: . Het totaal aantal uitkomsten is . De gevraagde kans is dus .

d

Er zijn in totaal mogelijkheden. Het aantal gunstige mogelijkheden is .
De gevraagde kans is dus .

Opgave 11
a

b

Opgave 12
a

b

c

d

Opgave 13
a

b

; ; ; ; .

Opgave 14Filmavond
Filmavond
a

b

c

d

Opgave 15
a

b

Opgave 16
a

b

c

d

verder | terug