Meetkundige berekeningen > Vectoren en inproduct
123456Vectoren en inproduct

Antwoorden van de opgaven

Opgave V1
a

b

. Hieruit volgt dat .

c

Nee.

d

. De lengte wordt keer zo groot.

e

is de som van beide vectoren. Je bepaalt die vector door eerst vanaf een bepaald beginpunt te doorlopen en dan vanaf het eindpunt te doorlopen. De vector van het beginpunt van naar het eindpunt van is .

Opgave 1
a

Zie de figuur bij antwoord b.

b
c

is de richtingshoek van en is de richtingshoek van .

geeft .

geeft .

Opgave 2
a

b

c

Opgave 3
a

b

Opgave 4

en .

Bereken het inproduct: .

Dus .

Opgave 5

geeft .

Opgave 6

Opgave 7
a

b

c

d

Opgave 8
a

, en

b

Opgave 9
a
b

De lengte van de vlucht is km.

c

Voor de draaihoek die daarbij hoort, geldt: .
Dit geeft .

d

km.

Opgave 10
a

Verder is , dus .

geeft .

b

Tevens is .

geeft .

c

Werk eventueel samen met een medeleerling.

Opgave 11
a

Een voor de hand liggend stel is en :

Een ander stel is bijvoorbeeld en :

b

Omdat het inproduct is, staan de vectoren loodrecht op elkaar.

c

Dat is het geval als de vectoren op één lijn liggen. Hun hoek is dan of .

Bijvoorbeeld en .

Opgave 12
a

geeft en .

b

geeft en .

c

Je kunt aan het rekenen slaan met een inproduct, maar je kunt ook opmerken dat , dus de hoek tussenbeide is .

Opgave 13
a

Eerste deel van de vaarroute is vector en het tweede deel van de tocht is vector .

b

De lengte van de zeiltocht is ongeveer km.

c

Voor de draaihoek die daarbij hoort, geldt: .

Dit geeft .

d

km.

Opgave 14

, , en .

Opgave 15
a

geeft en .

b

Een vector die loodrecht op een andere vector staat, en twee keer zo lang is, heeft de vorm of . In dit geval dus of .

Opgave 16
a

De vectoren en zijn even lang zijn en evenwijdig.

b

Omdat een parallellogram is, ligt het punt midden op de diagonalen. Het midden van is . Het midden van is ook .

Kortom, punt is .

en

zodat .

De hoek tussen de vectoren is ongeveer .

Opgave 17Bootje in een sloot
Bootje in een sloot
a

Teken eerst de krachtvector van de man in een assenstelsel. Je weet dat de boot in het midden blijft varen en dat de jongen de helft van de kracht van de man levert. De zijwaartse component van de jongen moet dan even groot zijn als die van de man en de totale lengte van de vector moet de helft van die van de man zijn. Teken de krachtvector van de jongen die hieraan voldoet.

b

Noem de vaarrichting de -richting. De -componenten van de vectoren van de kracht die de jongen en de man verzetten, zijn allebei even groot, maar in tegengestelde richting. Dit is omdat de boot in het midden blijft varen.

De jongen is half zo sterk als de man, dus zijn kracht is N. Noem de hoek die zijn krachtvector maakt met de -as . Bekijken van de -componenten geeft de vergelijking:

geeft .

De richtingshoek van de kracht die de jongen uitoefent is ongeveer .

c

De totale kracht in de vaarrichting is N.

De verrichte arbeid is ongeveer Nm.

d

De door de man verrichte arbeid is Nm.

De jongen verricht een arbeid van Nm.

De man verricht de meeste arbeid.

Opgave 18Gegeven hoek tussen twee vectoren
Gegeven hoek tussen twee vectoren

Gebruik het inproduct: .

Dit geeft , dus .

Hieruit volgt en .

Opgave 19
a

en .

b

De richtingshoek van is ongeveer , die van ongeveer .

c

en .

d

Opgave 20
a

De lengtes van de zijden moeten twee aan twee gelijk zijn, in dit geval en .

b

c

is een rechthoek, de vectoren op de zijden hebben een inproduct van .

verder | terug