Verbanden > Formules
123456Formules

Uitleg

Een kaars is 20 cm lang en wordt aangestoken. Je meet om het uur zijn lengte.

brandtijd (uur) 0 1 2 3
lengte (cm) 20 18 16 14

De tabel beschrijft een verband tussen de grootheden brandtijd en lengte.
Elk uur brandtijd wordt lengte 2 cm korter vanaf een beginlengte van 20 cm.
Als brandtijd = 5 uur, dan is lengte = 20 5 × 2 = 10 cm.
Dus: lengte = 20 brandtijd × 2.
Zo'n zin noem je een met twee : brandtijd en lengte.

Opgave 1

In de Uitleg vind je een formule voor een opbrandende kaars.

a

Laat met behulp van deze formule zien dat de kaars bij aansteken 20 cm lang is.

b

Bereken met behulp van de formule de kaarslengte bij brandtijd = 7.

c

In de grafiek lijkt de kaars na 10 uur te zijn opgebrand. Reken met behulp van de formule na dat dit inderdaad het geval is.

Opgave 2

Het handige van zo'n formule is dat hij ook bruikbaar is bij de berekening van kaarslengtes op tijdstippen die geen geheel aantal uren zijn.

a

Bereken met behulp van de formule de lengte van de kaars na 4,5 uur.

Je kunt met de formule zelfs helemaal precies berekenen hoe lang de kaars zou moeten zijn bij een brandtijd van bijvoorbeeld 6 uur en 23 minuten.

b

Welke waarde moet je dan voor brandtijd in de formule invullen?

c

Bereken de bijbehorende kaarslengte. Geef je antwoord ook in breuken en rondt niet af.

d

Waarom is in het geval van het opbranden van een kaars zo'n heel precies antwoord eigenlijk omzinnig?

Opgave 3

Een tweede kaars heeft een beginlengte van cm. Ook deze kaars brandt gelijkmatig op. Omdat hij dikker is wordt hij elk uur cm korter.

a

Maak ook voor deze kaars een formule van de lengte (in cm) afhankelijk van de brandtijd (in uur) op.

b

Bereken met behulp van deze formule de lengte van deze kaars na 13 uur branden.

c

Controleer met behulp van de formule dat de kaars na 28 uur branden nog 1 cm lang is.

verder | terug