Kwadratische functies > Totaalbeeld
123456Totaalbeeld

Toepassen

Opgave A1Boekenkast
Boekenkast

Boven op zolder, onder het schuine dak, maak je een rechthoekige boekenkast. Neem aan dat de zolder  m breed is en m hoog is. De vorm van de zijmuur waar de boekenkast tegenaan komt is een symmetrisch trapezium. Wanneer is de oppervlakte van het vooraanzicht van de boekenkast zo groot mogelijk?

a

Experimenteer eerst met de applet.

b

Kies een geschikte variabele en leidt een formule af voor de oppervlakte van het vooraanzicht.

c

Bereken met behulp van die formule de maximale waarde van .

Opgave A2Sterkte van een balk
Sterkte van een balk

In een bouwconstructie worden houten balken door verticale krachten belast. De sterkte van zo'n balk hangt dan af van zijn afmetingen en de gebruikte houtsoort. We bekijken liggende balken met een rechthoekige doorsnede. Balken kunnen op twee manieren worden neergelegd: met de lange rechthoekszijde horizontaal of verticaal. We noemen dit horizontaal of verticaal geplaatste balken. Zie figuur. De richting van de krachten is aangegeven met pijlen.

Voor de sterkte van een balk van een bepaalde houtsoort geldt de formule: . Hierbij is de basis in cm en de hoogte van de dwarsdoorsnede in cm.

Een balk van deze houtsoort heeft een rechthoekige dwarsdoorsnede van  cm bij  cm. Deze balk kan in verticale en in horizontale stand worden geplaatst.

a

In welke stand is de sterkte het grootst? Licht je antwoord toe.

De oppervlakte van de rechthoekige dwarsdoorsnede van een balk van deze houtsoort is gelijk aan  cm2. Voor de sterkte S geldt: .

b

Bereken de afmetingen en van deze dwarsdoorsnede. Geef en in één decimaal nauwkeurig.

Uit een cilindervormige boom van dezelfde houtsoort wil men een balk zagen met basis en hoogte . Voor deze balk geldt nog steeds de formule . De cirkelvormige dwarsdoorsnede heeft een diameter van cm. Zie de figuur hiernaast.

c

Laat zien dat in deze situatie voor de sterkte de formule kan worden gevonden.

d

Bereken de afmetingen en van de dwarsdoorsnede met de grootste sterkte. Geef en in één decimaal nauwkeurig.

Opgave A3Modderstroom
Modderstroom

Er zijn vulkanen die geen lava uitspuwen, maar een constante stroom modder geven. De koude modder stroomt als een rivier langzaam de helling af (zie bovenste foto). Aan de rand van deze stroom droogt de modder op. Daar stroomt de modder dus wat langzamer dan in het midden. Dit is te zien aan het geribbelde patroon.

Om dit snelheidsverschil te meten, gebruiken geologen stenen die ze op de modderstroom leggen. Bij een modderstroom van ruim dm breed gebeurt dat als volgt. Een geoloog legt een rij van stenen dwars in de stroom. Elke steen krijgt een nummer van 0 t/m 6. Steen nummer 0 legt hij vlak bij de rand van de stroom. Het midden van steen nummer 1 legt hij op  dm van het midden van steen nummer 0. De afstand tussen de middens van opeenvolgende stenen is steeds  dm. Steen nummer 6 ligt vlak bij de andere rand. Het resultaat zie je op de onderste foto.

Elk uur meet hij de afstand die de stenen door de stroom hebben afgelegd. In de onderstaande figuren zie je de ligging na één uur en na drie uur.

De afstand (in dm) die de stenen na één uur hebben afgelegd, wordt beschreven door de formule:

Hierbij is de afstand in dm van het midden van een steen tot het midden van steen 0 bij het begin van het proces.

a

Bereken de afstand die steen nummer 2 het eerste uur heeft afgelegd.

De stenen gaan met de modder mee de berg af. Elke steen heeft zijn eigen constante snelheid.

b

Van welke stenen ligt die snelheid het dichtst bij  dm per uur? Licht je antwoord toe met een berekening.

De geoloog heeft de stenen op een rechte lijn loodrecht op de stroomrichting gelegd. Steen nummer 3 zal door de stroom sneller vooruit komen dan de andere stenen. Het weglengteverschil dat op die manier tussen steen nummer 3 en steen nummer 6 na één uur ontstaat, is afgebeeld in de figuur hiernaast.

c

Toon aan dat het weglengteverschil tussen steen nummer 3 en steen nummer 6 na één uur cm is.

Op een gegeven moment meet de geoloog een weglengteverschil tussen steen nummer 3 en steen nummer 6 van cm.

d

Bereken de totale afgelegde weg van de steen met nummer 3, gerekend vanaf de plek waar de geoloog de stenen in de modderstroom gelegd heeft. Geef je antwoord in cm nauwkeurig.

verder | terug