Functies en grafieken > Het begrip functie
123456Het begrip functie

Antwoorden van de opgaven

Opgave V1
a

Bij `a=0` vind je `R=209` , daar "begint" de grafiek.

Omdat `a` de leeftijd in jaren is, kies je `0 le a le 100` bijvoorbeeld.

b

`R(20) = 209 - 0,75*20 = 194` slagen/minuut.

Opgave 1
a

Bereken `R(20)` betekent (vink het juiste, dus groene, vakje aan):

Bereken de functiewaarde bij invoerwaarde `a=20` .

Bereken de invoerwaarde bij functiewaarde `a=20` .

Bereken de functiewaarde als `R=20` .

Bereken de invoerwaarde als `R=20` .

b

`R ( 20 ) = 209 - 0,75*20=209-15=194`

c

Voer in: Y1=209-0.75X
Venster bijvoorbeeld: `13 le x le 24` en `180 le y le 210`

`R(13)=199,25`
`R(24)=191`

d

`209-0,75a=0` geeft `a=278 2/3` .

Dit is geen realistische situatie omdat niemand zo oud wordt.

Opgave 2
a

`f(text(-)4)=3*text(-)4^2+6*text(-)4=24`

b

Voer in: Y1=3X^2+6X
Venster bijvoorbeeld: `text(-)8 le x le 8` en `text(-)5 le y le 50`

c

Bijvoorbeeld `x=text(-)1,5, x= text(-)1` of `x=text(-)0,5` .

d

`3b^2+6b=24` oplossen geeft `b^2+2b-8=0` en dus `b=2 vv b=text(-)4` .

Opgave 3
a

`f(5)=2*5^2+4*5=70`

b

`f(text(-)6)=2*(text(-)6)^2+4*text(-)6=48`

c

`2x^2+4x=0` geeft `x(x+2)=0` en dus `x=0 vv x=text(-)2` .

Opgave 4
a

`g(2)=text(-)10`

b

`g(11)=5`

c

`text(-)10+5*sqrt(x-2)=0` geeft `sqrt(x-2)=2` en dus `x=6` .

Opgave 5

`y` is een functie van `x` als er bij elke waarde van `x` hoogstens één waarde van `y` hoort. Dit is het geval bij grafiek A, C en D.

Opgave 6
a

Bij elke (toegestane) waarde voor het gewicht `G` vind je precies één tarief `T` . Dus `T` is een functie van `G` . Let op dat als je een brief van `20` gram hebt, je € 1,28 moet betalen en niet € 0,64.

b

Omgekeerd is `G` geen functie van `T` . Als je het bedrag weet, kun je niet precies zeggen hoe zwaar het poststuk is, want daar zijn dan meerdere mogelijkheden voor.

Opgave 7
a

Bij bijvoorbeeld `x=0` hoort `y=text(-)10` en `y=10` .

b

`x^2+y^2=100` geeft `y^2=100-x^2` en dus `y=sqrt(100-x^2) vv y=text(-)sqrt(100-x^2)` .

c

Het zijn twee halve cirkels die samen een cirkel vormen.

d

Er is minstens één waarde van `x` waarvoor er twee waarden van `y` zijn.

Opgave 8

Voer de functies in en gebruik de optie intersect om de coördinaten van de snijpunten te vinden.

Je vindt: `x=text(-)10 vv x~~1,13 vv x~~8,87` met respectievelijk `y=0, y=11,13` en `y = 18,87` .

Opgave 9

Voer in: Y1=X^3-5X+2 en Y2=-X+1
Venster: standaard

Bepaal de `x` -coördinaten van de snijpunten.
Je vindt `x~~text(-)2,11 vv x~~0,25 vv x~~1,86` .

Opgave 10
a

`f ( 3 ) = 8 - 4*3 + 3^3 = 8 - 12 + 27 = 23`

b

`8-4x+x^3=8` geeft `x^3-4x=0` en dus `x = 0 vv x = text(-)2 vv x=2` .

c

Venster bijvoorbeeld: `text(-)3 \leq x\leq 3` en `text(-)10\leq y\leq 15`

d

Ja, want `y` is een functie van `x` , dus hoort bij elke waarde van `x` precies één waarde van `y` .

e

Nee, bij b heb je bijvoorbeeld berekend dat bij `f(x)=8` meerdere `x` -waarden horen.

Opgave 11
a

Bij elke waarde van `a` hoort precies één waarde van `K` .

b

`K ( 100 ) = 35,00 + 0,77*100 = 112`

c

`K ( a ) = 35,00 + 0 , 77 a`

d

`35 + 0,77 a = 500` geeft `a~~603` m3.

Opgave 12
a

Nulpunten: `x =text(-)10` en `x=10` en top `(0, 100)` .

b

Venster bijvoorbeeld: `text(-)15 \leq x\leq 15` en `text(-)10\leq y\leq 110`

c

`( text(-)7,07 ;50 )` en `( 7,07 ; 50 )` .

Opgave 13
a

Nulpunten: `x=0` en `x=100` .

Venster bijvoorbeeld: `text(-)10 \leq x\leq 110` en `text(-)500\leq y\leq 2500` .

b

Nulpunten: `x=0` en `x=50` .

Venster bijvoorbeeld: `text(-)5 \leq x\leq 55` en `text(-)7000\leq y\leq 2000` .

c

Nulpunten: `x= text(-) 30 ` en `x= 50` .

Venster bijvoorbeeld: `text(-)35 \leq x\leq 55` en `text(-)2000\leq y\leq 500` .

d

Nulpunt: ` text(-)125 ` .

Venster bijvoorbeeld: `text(-)150 \leq x\leq 10` en `text(-)50\leq y\leq 250` .

Opgave 14
a

De nulpunten van `y_1: x=±3` en `x=±2` .

De nulpunten van `y_2: x=text(-)3` en `x=2` .

b

Voer in: Y1=(X^2-4)(X^2-9) en Y2=-X^2-X+6
Venster bijvoorbeeld: `text(-)10\leq x\leq 10` en `text(-)50\leq y\leq 50`

c

`(text(-)3 , 0 )` , `(text(-)1,79 ; 4,58 )` , `(2 , 0 )` en `(2,79 ; text(-)4,58 )` .

Opgave 15Water in de wastafel
Water in de wastafel
a

`h(0)=(4-0,36*0)^2=16` cm.

b

Voer in: Y1=(4-0.36X)^2
Venster bijvoorbeeld: `0 le x le 20` en `0 le y le 20`
De daling neemt af naarmate de tijd toeneemt.

c

`(4-0,36t)^2 = 0` geeft `4-0,36t=0` en dus `t~~11,11` seconden.

d

`(4-0,36t)^2 = 8` geeft `4-0,36t=sqrt(8)` en dus `t~~3,25` seconden.

Na `3,25` seconden.

Opgave 16Cilindrisch blikje
Cilindrisch blikje
a

`V =π * r^2 * 2*r = 2 π r^3`

b

Venster bijvoorbeeld: `text(-)4\leq x\leq 20` en `text(-)10000\leq y\leq 55000`

c

Voer in: Y2=1000

Met intersect vind je `r~~5,42` .

Je kunt dit ook algebraïsch oplossen:

`V (r) = 2 πr^3 = 1000` geeft `r^3 = 1000/(2 π)` en `r = root(3)(1000/(2 π)) ~~ 5,42` cm.

Opgave 17
a

`f ( 5 ) = 250` en `f ( text(-)5 ) = text(-)2250`

b

`x = 0 vv x = 10`

Bijvoorbeeld: `text(-)2\leq x\leq 15` en `text(-)100\leq y\leq 600` .

c

`( 0 , 0 )` , `( 8 , 64 )` en `( 12 , 96 )` .

Opgave 18

Bij welke van deze grafieken is `y` een functie van `x` ?
(Vink de juiste - groene - aan.)

A

B

C

verder | terug