Afgeleide functies > Buigpunten
12345Buigpunten

Inleiding

Zodra de helling van de grafiek overgaat van toenemende stijging (of daling) naar afnemende stijging (of daling), of omgekeerd, spreek je van een buigpunt. In zo'n buigpunt heeft de helling een (locaal) maximum of minimum. Je vindt buigpunten dus door naar de extremen van de afgeleide te zoeken.

Je leert in dit onderwerp:

  • de extremen van een afgeleide bepalen met behulp van de tweede afgeleide;

  • het berekenen van buigpunten toepassen in praktijksituaties.

Voorkennis:

  • differentiëren met de machtsregel, de somregel en de constante-regel;

  • werken met de diverse soorten functies;

  • extremen bepalen met behulp van differentiëren.

verder | terug