Differentieerregels > Differentieerregels
123456Differentieerregels

Uitleg

De afgeleide functie (ook wel de hellingsfunctie genoemd) geeft de helling van de grafiek aan.

  • Als `f(x)=x^3` , dan is de afgeleide functie: `f'(x)=3x^2` .

  • Als `g(x)=x^2` , dan is de afgeleide functie: `g'(x)=2x` .

  • Als `h(x)=2x^3 - x^2 + 5` , dan is de afgeleide functie: `h'(x)=6 x^2 - 2x` .

Je maakt hierbij gebruik van de constanteregel, de machtsregel en de somregel/verschilregel.

Deze regels zijn niet toereikend om alle functies te differentiëren. Alleen functies die je kunt herleiden tot een som en/of verschil van machtsfuncties kun je met deze regels differentiëren.

Opgave 1

Bekijk de Uitleg .

a

Welke differentieerregels pas je toe bij het bepalen van de afgeleide van `f(x)=3 x^3+6 x^2-12` ?
Bereken die afgeleide.

b

Welke betekenis heeft de afgeleide van een functie?

c

Hoe gebruik je de afgeleide om de extremen van een functie te berekenen?
Bereken de extremen van `f` .

Opgave 2

Gegeven zijn de functies `f(x) = 0,5x^3 - x^2` en `g(x) = x^2` .

a

Differentieer `k(x) = f(x) * g(x)` .

b

Differentieer `l(x) = (f(x))/(g(x))`

c

Waarom kun je `m(x) = (g(x))/(f(x))` nog niet differentiëren?

verder | terug