Exponentiële en logaritmische functies > Exponentiële functies
12345Exponentiële functies

Theorie

Voor de afgeleide van de exponentiële functie geldt:

  • Als `f(x)=g^x` dan is `f' (x)=g^x*ln(g)` .

Hierbij maak je gebruik van het veranderen van grondtal: `g= text(e) ^ (ln(g))` . (Denk er om dat `g>0` moet zijn.)
Dit is één van de definitieformules van logaritmen, toegepast op het getal `text(e)` .

Hiermee kun je elke exponentiële functie `N` met groeifactor `g` per tijdseenheid `t` op meerdere manieren schrijven:

  • `N(t)=N(0 )*g^t`

  • `N(t)=N(0 )* text(e) ^ (kt)` waarin `k=ln(g)`

  • `N(t)=N(0 )*10^ (kt)` waarin `k=log(g)`

Dat is handig als je met meerdere exponentiële functies met verschillende groeifactoren te maken hebt. Je kunt ze dan toch steeds hetzelfde grondtal geven, `e` of `10` .

Verder kun je nu allerlei functies waarin vormen als `text(e) ^x` en/of `g^x` voorkomen differentiëren met de differentieerregels. Daarmee kun je van functies die ingewikkelder zijn dan zuiver exponentiële functies ook de karakteristieken bepalen.

verder | terug