Afgeleide functies > Extremen berekenen
1234567Extremen berekenen

Voorbeeld 1

Bereken de extremen van de functie:

> antwoord

Vind de extremen door de functie te differentiëren en de afgeleide gelijk te stellen aan :

geeft:

Maak een tekenschema van de afgeleide.

Bij heeft een minimum, want de functie gaat daar over van dalend in stijgend.
min.

Opgave 2

Gegeven is de functie . Soms is een grafiek goed in beeld brengen nog lastig. Je kunt dan om te bepalen of er sprake is van een extreem en of het een maximum dan wel een minimum is, een tekenschema maken van de afgeleide. Zie het voorbeeld.

a

Bepaal de afgeleide van .

b

Bereken de nulwaarden van de afgeleide.

c

Maak een tekenschema van de afgeleide van . Geef er de plaats van de extremen in aan.

Opgave 3

Bekijk de grafiek van de functie .

a

Bereken de waarden van waarin .

b

Deze functie heeft voor een horizontale raaklijn. Heeft de functie ook een extreme waarde voor ?

c

Bekijk de grafiek van de functie . Wat is er aan de hand in ?

Opgave 4

Gegeven zijn de functies en .

a

Bereken algebraïsch de snijpunten van beide grafieken.

b

Bereken met behulp van differentiëren de extremen van .

c

Als je het getal in het functievoorschrift van vervangt door een ander getal, gaat de grafiek door het punt waarin een maximum heeft. Door welk getal moet je vervangen? En hoeveel snijpunten hebben beide grafieken dan?

verder | terug