Exponentiële en logaritmische functies > Exponentiële functies
123456Exponentiële functies

Antwoorden van de opgaven

Opgave V1
a

De e-macht en de ln zijn elkaars inverse functie, dus `2 = text(e)^(ln(2))` .

b

`f'(x)= text(e)^(ln(2)*x) * ln(2)`

c

`f'(x) = 2^x * ln(2)`

Opgave 1
a

`g(x) = 3^x = (text(e)^(ln(3)))^x = text(e)^(x * ln(3))` dus `g'(x) = ln(3) * text(e)^(x * ln(3)) = ln(3) * 3^x` .

b

`h(x) = 0,5^x = (text(e)^(ln(0,5)))^x = text(e)^(x * ln(0,5))` dus `h'(x) = ln(0,5) * text(e)^(x * ln(0,5)) = ln(0,5) * 0,5^x` .

c

`f(x) = g^x = (text(e)^(ln(g)))^x = text(e)^(x * ln(g))` dus `f'(x) = ln(g) * text(e)^(x * ln(g)) = ln(g) * g^x` .

Opgave 2

`f(x) = text(e)^x` geeft `f'(x) = ln(text(e)) * text(e)^x = text(e)^x` .

Opgave 3

Gebruik alle tot nu toe geleerde differentieerregels. Controleer pas je antwoord als je ze allemaal hebt gemaakt. Heb je fouten gemaakt? Bekijk dan goed wat je fout deed!

Opgave 4
a

`f'(x) = 5 ln(3) * 3^x`

b

`f'(x) = 2,5 ln(2) * 2^(0,5x)`

c

`f'(x) = text(-)4,8 ln(10) * 10^(0,1x)`

d

`f'(x) = text(-)10text(e)^(text(-)0,1x)`

Opgave 5
a

Doen.

b

`N(t) = 100 * 0,9996^t` geeft `N'(t) = 100 * ln(0,9996) * 0,9996^t ~~ text(-)0,043 * 0,9996^t` .
`N(t) = 100 * text(e)^(text(-)0,00043t)` geeft `N'(t) = 100 * text(-)0,00043 * text(e)^(text(-)0,00043t) = text(-)0,043 * text(e)^(text(-)0,00043t)` .
`N(t) = 100 * 10^(text(-)0,00019t)` geeft `N'(t) = 100 * text(-)0,00019 * ln(10) * text(e)^(text(-)0,00019t) = text(-)0,043 * 10^(text(-)0,00019t)` .
`N'(0) ~~ text(-)0,043` .

c

`N'(90) ~~ text(-)0,0414` , dus je ziet de vervalsnelheid kleiner worden.

d

`100 * text(e)^(text(-)0,00043t) = 20` geeft `text(-)0,00043t = ln(0,20)` en `t ~~ 3743` . Dus na ongeveer `3750` jaar.

Opgave 6
a

`f'(x) = 8 ln(3) * 3^(2x - 4)` .
`f(1) = text(-)11 5/9` en `f'(1) = 8/9 ln(3)` geeft als vergelijking van de raaklijn `y = 8/9 ln(3) x - 11 5/9 - 8/9 ln(3)` .

b

`f(x) = text(e)^(x) - text(e)^(text(-)x)` geeft `f(x) = text(e)^(x) + text(e)^(text(-)x)` .
`f(1) = text(e) - text(e)^(text(-)1)` en `f'(1) = text(e) + text(e)^(text(-)1)` geeft als vergelijking van de raaklijn `y = (text(e) + 1/(text(e))) x - 2/(text(e))` .

c

`f'(x) = text(e)^(1/x) * (text(-)1)/(x^2)` . `f(1) = text(e)` en `f'(1) = text(-)text(e)` geeft als vergelijking van de raaklijn `y = text(-)text(e)x + 2text(e)` .

d

`f(x) = text(e)^(text(-)x^2) * x^(text(-)3)` geeft `f'(x) = text(-)2x^(text(-)2) * text(e)^(text(-)x^2) - 3x^(text(-)4) * text(e)^(text(-)x^2)` . `f(1) = text(e)^(text(-)1)` en `f'(1) = text(-)5text(e)^(text(-)1)` geeft als vergelijking van de raaklijn `y = text(-) 5/(text(e)) * x + 6/(text(e))` .

Opgave 7
a

`f(x) = x text(e)^(text(-)x) = 0` geeft `x = 0` dus nulpunt `(0, 0)` . `f'(x) = (1 - x)text(e)^(text(-)x) = 0` geeft `x = 1` en met de grafiek max. `f(1) = 1/(text(e))` . Als `x rarr oo` dan `f(x) rarr 0` geeft horizontale asymptoot `y = 0` .

b

`f''(x) = (x - 2)text(e)^(text(-)x) = 0` geeft `x = 2` dus buigpunt `(2, 2/(text(e)^2))` .

Omdat `f(2) = 2/(text(e)^2)` en `f'(2) = text(-)1/(text(e)^2)` is de raaklijn in het buigpunt `y = text(-)1/(text(e)^2)*x + 4/(text(e)^2)` .

c

`f'_a(x) = a(1 - x)text(e)^(text(-)x) = 0` betekent `a != 0` en geeft dan `x = 1` en een uiterste waarde van `f(1) = a/(text(e))` .

d

Op de lijn `x = 1` .

e

`a/(text(e)) = 80` geeft `a = 80text(e)` .

f

Raaklijn in `(0, 0)` heeft hellingsgetal `f'(0) = a` en dus vergelijking `y = ax` .
Raaklijn door `(2, 15)` geeft `a = 7,5` .

g

`f''_a(x) = a(x - 2)text(e)^(text(-)x) = 0` geeft `x = 2` en buigpunt `(2, a/(text(e)^2))` . Buigpunt op `y = 20` betekent `a/(text(e)^2) = 20` en dus `a = 20text(e)^2` .

Opgave 8
a

Niet al meteen de formule bekijken, maar bedenken hoe het proces verlopen zal. Stijgende grafiek van `p(t)` door `(0; 1,4)` en `(10; 2,0)` met horizontale asymptoot `p = 3,5` .

b

Grafiek van `p(t) = 3,5 - a * g^t` door `(0; 1,4)` en `(10; 2,0)` geeft `1,4 = 3,5 - a * g^0` en `2,0 = 3,5 - a * g^(10)` . Hieruit vind je `a = 2,1` en `g ~~ 0,97` .

c

`p(t) = 3,5 - 2,1 * 0,97^t = 2,6` geeft `t ~~ 25,2` dus vanaf `26` seconden is dat het geval.

d

`p'(t) = text(-)2,1 * 0,97^t * ln(0,97)` en dus is `p'(0) ~~ 0,07` atm/s.

Opgave 9
a

`f'(x) = 1 - ln(2) * 2^(text(-)x) = 0` geeft `x = \ ^2 log(ln(2))` en het minimum is daarom `f( ^2log(ln(2))) ~~ 0,92` .

b

`f'(0) = 1 - ln(2)` en `f(0) = 1` geeft `y = (1 - ln(2))x + 1` .

Opgave 10
a

Nulpunt is alleen `(0,0)` en horizontale asymptoot is `y = 0` .
`f'(x) = (1 - 2x^2)text(e)^(text(-)x^2) = 0` geeft `x = +- 1/2sqrt(2)` .
Met de grafiek geeft dit min. `f(text(-) 1/2sqrt(2)) = text(-) 1/2sqrt(2/(text(e)))` en max. `f(1/2sqrt(2)) = 1/2sqrt(2/(text(e)))` .

b

`f''(x) = (4x^3 - 6x)text(e)^(text(-)x^2) = 0` geeft `x = 0 vv x = +- 1/2sqrt(6)` .
De buigpunten zijn `(0, 0)` , `(text(-) 1/2sqrt(6), text(-) 1/(2text(e))sqrt(6/(text(e))))` en `(1/2sqrt(6), 1/(2text(e))sqrt(6/(text(e))))` .

c

De lijn `y = px` snijdt de grafiek in `(0, 0)` . Hij snijdt de grafiek in geen enkel ander punt als de helling van die lijn negatief is of groter dan `f'(0) = 1` . Dus moet `p ≤ 0 vv p ≥ 1` .

Opgave 11
a

`f_0(x) = x^2 text(e)^x = 0` geeft `x = 0` , dus nulpunt `(0, 0)` .
`f'_0(x) = (x^2 + 2x) text(e)^x = 0` geeft `x = 0 vv x = text(-)2` , en met de grafiek max. `f(text(-)2) = 4/(text(e)^2)` en min. `f(0) = 0` . Als `x rarr text(-)oo` dan `f(x) rarr 0` , dus de horizontale asymptoot is `y = 0` .

b

`x^2 text(e)^x = (x - 1)^2 text(e)^x` geeft `text(-)2x + 1 = 0` en dus `x = 0,5` . Het snijpunt is `(0,5; 0,25sqrt(text(e)))` .

c

`x^2 text(e)^x = (x - p)^2 text(e)^x` geeft `text(-)2px + p^2 = 0` en dus `p = 0 vv x = 0,5p` ( `p = 0` vervalt want dan is er niet één snijpunt, maar vallen beide grafieken samen). Het snijpunt is daarom `(0,5p; 0,25p^2 text(e)^(0,5p))` . Dit punt ligt op `y = 1` als `0,25p^2 text(e)^(0,5p) = 1` . Deze vergelijking is alleen op te lossen met behulp van de grafische rekenmachine. Je vindt `p ~~ 1,41` .

d

`f'_p(x) = (x^2 + (2 - 2p)x + p^2 - 2p)text(e)^x = 0` geeft `x = (text(-)2 + 2p +- sqrt(4))/2` , dus `x = text(-)2 + p vv x = p` . Omdat `p ≥ 0` is `p gt text(-)2 + p` en dus wisselt `x^2 + (2 - 2p)x + p^2` bij `x = text(-)2 + p` van positief naar negatief en bij `x = p` van negatief naar positief is er sprake van één maximum en wel voor `x = text(-)2 + p` . De grootte van het maximum is `4 text(e)^(p - 2)` .

e

`f''_p(x) = (x^2 + (4 - 2p)x + p^2 - 4p + 2)text(e)^x = 0` geeft `x^2 + (4 - 2p)x + p^2 - 4p + 2 = 0` .
De discriminant van deze vergelijking bepaalt het aantal buigpunten.
`D = (4 - 2p)^2 - 4(p^2 - 4p + 2) = 8 gt 0` , dus er zijn altijd twee buigpunten.

Opgave 12
a

Grafiek is stijgend vanaf `(0, 6)` naar horizontale asymptoot `T = 20` .

b

De snelheid van temperatuurverandering `T'(t)` is recht evenredig met het temperatuurverschil met de omgeving en dat is `20 - T` .

c

`T(t) = 20 + a * text(e)^(ct)` en `T'(t) = a * c * text(e)^(ct)` invullen geeft links en rechts van het isgelijkteken hetzelfde voor elke `t` .

d

`T(12) = 18` en `T(0) = 6` invullen geeft `a = text(-)14` en `c = 1/(12) ln(1/7) ~~ text(-)0,16` . Dus `T(t) = 20 - 14text(e)^(text(-)0,16t)` .

e

`T'(0) ~~ 2,27` en `T'(15) ~~ 0,20`  °C/min. De opwarming verloopt steeds langzamer.

Opgave 13
a

De halveringstijd is 8,06 dagen, dus `text(e)^(text(-)8,06k) = 0,5` . Dan is `text(-)8,06k = ln(0,5)` , dus `k ~~ 0,086` . De formule wordt dan: `m = m_0 text(e)^(text(-)0,086t)` .

b

`5,00 * text(e)^(text(-)0,086t) ~~ 1,40` , dus ongeveer `1,4` gram.

c

`m' = text(-)0,086 * m` dus de evenredigheidsconstante is `text(-)0,086` .

d

`text(e)^(text(-)0,086t) = 0,10` geeft `t ~~ 27` , dus na `27` dagen.

e

Ook na ongeveer `27` dagen, want de vervalsnelheid is recht evenredig met de hoeveelheid.

f

`5,00 * text(e)^(text(-)0,086t) = 0,005` geeft `t ~~ 80,3` , dus na `81` dagen.
Theoretisch gesproken is de stof nooit volledig verdwenen, want de grafiek van `N` nadert wel steeds dichter naar `N = 0` als `t` groter wordt, maar die waarde wordt nooit echt bereikt.

Opgave 14C-14 methode
C-14 methode
a

`text(e)^(5600k) = 0,5` geeft `k = (ln(0,5))/(5600) ~~ text(-)0,000124` .

b

`t = (ln(0,79))/(k) ~~ 1900` jaar.

c

`t = (ln(0,65))/(k) ~~ 3500` jaar.

d

`t = (ln(0,33))/(k) ~~ 9000` jaar.

e

`C'(t) = 100 * text(e)^(text(-)0,000124t) * text(-)0,000124`
Dus `C'(0) ~~ text(-)0,0124` % per jaar.

Opgave 15
a

`f(x) = 3 * 0,5^(2x - 1) - 4 = 0` geeft `0,5^(2x - 1) = 4/3` en `2x - 1 = ^(0,5)log(4/3)` , dus `x ~~ 0,29` .
`f'(x) = 3ln(0,5) 0,5^(2x - 1)` geeft `f'(0,29) = 3ln(0,5)*4/3 ~~ text(-)2,77` .
De vergelijking van de raaklijn wordt `y = text(-)2,77x + 0,81` .

b

`f(x) = 5 - text(e)^(sqrt(x)) = 0` geeft `x = (ln(5))^2 ~~ 2,59` .
`f'(x) = text(-) (text(e)^(sqrt(x)))/(2sqrt(x))` geeft `f'(2,59) = text(-) 5/(2 ln(5)) ~~ text(-)1,55` .
De vergelijking van de raaklijn wordt `y = text(-)1,55x + 4,02` .

Opgave 16
a

`text(e)^(text(-)alpha) = 0,4` geeft `alpha = text(-)ln(0,4) ~~ 0,916` .

b

Ongeveer `5` cm.

c

`I'(0) = text(-)I(0)ln(0,4)`

verder | terug