Goniometrische functies > Goniometrische formules
123456Goniometrische formules

Uitleg

Om eigenschappen van sinus, cosinus en tangens af te leiden moet je kijken naar hun definities in de eenheidscirkel:

`sin(α)=y_P`
`cos(α)=x_P`
`tan(α)= (y_P) / (x_P)`

In deze figuur zie je de hoeken `α` en `β=π -α` .

Omdat `∆OQP` en `∆OQ'P'` congruent zijn vanwege de symmetrie van de figuur geldt:

  • `sin(π-α)=sin(α)`

  • `cos(π-α)= text(-) cos(α)`

  • `tan(π-α)= text(-) tan(α)`

Kijk je alleen naar `∆OQP` dan zie je op grond van de stelling van Pythagoras:
`sin^2(α)+ cos^2(α)=1` .
Op deze wijze kun je allerlei symmetrieformules voor sin, cos en tan afleiden.
Bijvoorbeeld: `sin(text(-) α)= text(-) sin(α)` , `cos(text(-) α)=cos(α)` en `tan(text(-) α)= text(-) tan(α)` .
Of: `sin(1/2π-α)=cos(α)` en `cos(1/2π-α)=sin(α)` .
Of: `cos(α)=sin(α+1/2π)` en `sin(α)=cos(α-1/2π)` .

Opgave 1

Bekijk de symmetrieformules die in de Uitleg 1 worden afgeleid.

a

Laat zelf zien, dat: `sin(text(-)alpha) = text(-)sin(alpha)` en `cos(text(-)alpha) = cos(alpha)` en `tan(text(-)alpha) = text(-)tan(alpha)` .

b

Laat zien, dat: `sin(1/2 pi – alpha) = cos(alpha)` en `cos(1/2 pi – alpha) = sin(alpha)` .

c

Laat ook zien dat: `cos(alpha) = sin(alpha + 1/2 pi)` en `sin(alpha) = cos(alpha – 1/2 pi)` .

Opgave 2

Breng de grafiek van `y= sin^2(x)+ cos^2(x)` op je grafische rekenmachine in beeld.

a

Welke formule heb je nu zichtbaar gemaakt? En hoe wordt die formule in de Uitleg 1 afgeleid?

b

Maakt het daarbij verschil of je in graden of radialen werkt?

verder | terug