Parametervoorstellingen > Parametervoorstelling
123456Parametervoorstelling

Uitleg

Bekijk de applet

Als je de vector `vec(r)` langer maakt zie je punt `A` over een rechte lijn bewegen.

Bij elk punt `A` hoort een plaatsvector `vec(v) = vec(p) + t*vec(r) =`
`= ((x),(y)) = ((0),(2)) + t*((2),(1))` .

Dit noem je een vectorvoorstelling van de lijnwaar `A` op ligt.
`vec(r)` heet een richtingsvector en `vec(p)` een plaatsvector van de lijn.

Uit de kentallen van de richtingsvector kun je afleiden dat de richtingscoëfficiënt van de lijn `1/2` is. De bijbehorende vergelijking is `y=1/2x+2` ofwel `text(-)x+2y = 4` .

Elk punt `A` op de lijn heeft coördinaten `(0 + 2t, 2 + t)` . Je kunt gemakkelijk nagaan dat deze coördinaten voor elke waarde van `t` ook aan de vergelijking voldoen. Vergelijking en vectorvoorstelling zijn beide geschikte manieren om een lijn te beschrijven.

Je zegt wel dat `x(t) = 2t` en `y(t)=2+t` een parametervoorstelling van de lijn is. De variabele `t` (de "tijd") is de parameter.

Opgave 1

Bekijk in de uitleg wat een vectorvoorstelling van een lijn is.

a

Waarom is `((x),(y))=((0),(2))+p*((4),(2))` ook een vectorvoorstelling van de getekende lijn? Welke parametervoorstelling hoort daar bij?

b

En is `((x),(y))=((-2),(1))+q*((2),(1))` ook een geschikte vectorvoorstelling? Licht je antwoord toe.

c

Hoe bepaal je vanuit een richtingsvector van de lijn de richtingscoëfficiënt?

d

Laat zien, hoe je nu een vergelijking van de lijn opstelt.

Je kunt de vergelijking van de lijn ook rechtstreeks uit de parametervoorstelling halen.

e

Laat zien hoe dit gaat door de parameter `t` weg te werken uit beide vergelijkingen van de parametervoorstelling.

Opgave 2

De lijn `m` gaat door de punten `A(2, 3)` en `B(4, 0)` .

a

Stel voor `l` een vectorvoorstelling en een parametervoorstelling op.

b

Waarom wordt bij a gesproken over "een" vectorvoorstelling en "een" parametervoorstelling?

c

Stel een vergelijking van `l` op.

d

Controleer nu dat de vergelijking die je gevonden een richtingscoëfficiënt heeft die past bij de richtingsvector.

verder | terug