Parametervoorstellingen > Parametervoorstelling
123456Parametervoorstelling

Theorie

Bekijk de applet

Je ziet hier hoe je de plaats een willekeurig punt `A` dat over een rechte lijn beweegt door `t` te variëren kunt beschrijven met twee vectoren:

  • de plaatsvector `vec(p)` naar een vast punt van de lijn

  • een richtingsvector `vec(r)` (bij `t=1` )

Neem lijn `l` door `B(text(-)1, 2)` met `vec(r) = ((2),(1))` .

Naar elk punt `A(x, y)` van `l` wijst een vector `((x),(y)) = ((text(-)1),(2)) + t * ((2),(1))` .

Dit noem je een vectorvoorstelling van de lijn `l` . De plaatsvector is een vector vanuit `O(0, 0)` naar een punt `B` op de lijn, de richtingsvector ligt op de lijn. Je kunt dit ook schrijven als parametervoorstelling van de lijn `l` : `x(t) = text(-)1 + 2t` en `y(t) = 2 + t` .

De richtingsvector kun je vergroten of verkleinen tot `((1),(0,5))` .

En daarom is de richtingscoëfficiënt van de lijn `0,5` . De vergelijking is dus `y = 0,5x + 2,5` , ofwel `x - 2y = text(-)5` .

verder | terug