Redeneren en bewijzen > Totaalbeeld
123456Totaalbeeld

Testen

Opgave 1

Bekijk de figuur.
Bewijs dat `DeltaPQR` gelijkvormig is met `DeltaABC` .

Opgave 2

`l` , `m` en `n` zijn drie evenwijdige lijnen met `m` tussen `l` en `n` . De lijn `s` staat loodrecht op `l` en snijdt `l` , `m` en `n` in respectievelijk `A` , `B` en `C` . `|AB|:|BC|=1 :3` . Je gaat bewijzen dat van elke lijn die de drie lijnen snijdt het stuk tussen `l` en `n` door `m` verdeeld wordt in stukken die zich verhouden als `1 :3` .

a

Bewijs eerst dat `s` ook `m` en `n` loodrecht snijdt.

b

Bekijk een lijn `t` die ook loodrecht op `l` staat. Geef voor dat geval een bewijs. Gebruik rechthoeken, hulplijnen, congruentie en gelijkvormigheid.

c

Neem nu een lijn die niet loodrecht op `l` staat. Geef voor dat geval een bewijs, gebruik hulplijnen.

Opgave 3

Ga uit van een rechthoekige driehoek `ABC` met `angleA=90` °. Op `BC` ligt punt `D` zo, dat `AD=AC` . Lijnstuk `DE` staat loodrecht op `AD` en punt `E` ligt op `AB` .

Bewijs dat `ED=EB` .

Opgave 4

Gegeven is een gelijkbenige driehoek `ABC` met `|AB|=|AC|=8` en `|BC|=4` .

Bereken de straal van de ingeschreven cirkel (dat is de cirkel die alle zijden van de driehoek raakt).

Opgave 5

In `DeltaABC` zijn `AD` , `BE` en `CF` de hoogtelijnen.

Bewijs dat deze hoogtelijnen bissectrices zijn in `DeltaDEF` .

verder | terug