Krommen in 2D > Ellipsen
123456Ellipsen

Uitleg

Bekijk de ellips met vergelijking `(x^2) /16 + (y^2) /7 = 1` .
De kromme lijkt symmetrisch ten opzichte van de `x` -as en ten opzichte van de `y` -as te zijn. Maar hoe toon je dit aan?

Als de ellips symmetrisch is ten opzichte van de `y` -as, dan betekent dit dat behalve `P(x, y)` ook zijn spiegelbeeld `P_1(text(-)x, y)` op de kromme moet liggen. De redenering is zo:

  • `P(x, y)` ligt op de kromme, dus voldoet aan de gegeven vergelijking van de ellips.

  • Voldoet `P_1(text(-)x, y)` ook aan die vergelijking?

  • Controleer dit door `P_1` in te vullen: `((text(-)x )^2) /16 + (y^2) /7 = 1` .

  • Omdat `(text(-)x)^2=x^2` is dit hetzelfde als `(x^2) /16 + (y^2) /7 = 1` .

  • Hieruit volgt dat `P_1` op de ellips ligt.

Conclusie: `P(x, y)` en `P_1(text(-)x, y)` voldoen beide aan de gegeven vergelijking van de kromme en is symmetrisch ten opzichte van de `y` -as.

Opgave 5

In de uitleg wordt de symmetrie van een ellips ten opzichte van de `y` -as bewezen.

a

Bewijs op dezelfde manier dat deze ellips symmetrisch is ten opzichte van de `x` -as.

b

Bewijs op dezelfde manier dat deze ellips symmetrisch is ten opzichte van de oorsprong `O (0,0)` van het assenstelsel.

verder | terug