Krommen in 2D > Hoeken
123456Hoeken

Verwerken

Opgave 11

Bereken de hoek tussen de lijnen `l` en `m` . Rond indien nodig af op gehele graden.

a

`l:y=text(-)3 x+2` en `m:4 x-2 y=9`

b

`l:x+y=6` en `m:3 x+4 y=8`

c

`l:7 x-3 y=42` en `m:3 x+7 y=35`

Opgave 12

Lijn `l` gaat door het punt `(120,31)` en staat loodrecht op lijn `m` met vergelijking `25 x-40 y=167` .

a

Stel de vergelijking op van lijn `l` .

b

Staan de lijnen `p:text(-)30 x+20 y=33` en `q:2 x=100 -3 y` loodrecht op elkaar?

Opgave 13

Een lijn `l` snijdt de `x` -as in `A(3,0 )` onder een hoek van `60` ┬░. Stel de mogelijke exacte vergelijkingen op van lijn `l` .

Opgave 14

Gegeven is driehoek `ABC` met `A( 0 ,2 )` , `B( 5 ,4 )` en `C( 2 ,5 )` .

a

Bereken de drie hoeken van deze driehoek in graden nauwkeurig.

b

Stel een vergelijking op van lijn `p` door `C` loodrecht op `AB` .

c

`D` is het snijpunt van lijn `p` met de lijn `AB` . Bereken exact de co├Ârdinaten van `D` .

d

De lengte van de hoogtelijn `CD` is de hoogte van driehoek `ABC` als `AB` als basis wordt genomen. Bereken de oppervlakte van driehoek `ABC` met behulp van hoogte `CD` .

e

Geef een andere manier waarop de oppervlakte van driehoek `ABC` te berekenen is.

Opgave 15

Gegeven is de parabool `p` : `y^2 = 4x + 8` en de lijn `l` : `x - y = text(-)2` .

a

Bereken de twee hoeken die lijn `l` met de parabool `p` maakt in gehele graden.

b

Bereken de hoek die parabool `p` maakt met de cirkel `c` : `x^2 + y^2 = 5` in gehele graden.

Opgave 16

Gegeven is de cirkel `c` met middelpunt `O( 0 ,0 )` en straal `sqrt(17)` . De lijn `l:text(-)3 x+5 y=p` snijdt deze cirkel in de punten `A` en `B` .

a

Gegeven is dat `|AB|=sqrt(34)` . Bepaal `p` .

b

Neem `p=17` . Bewijs met behulp van analytische meetkunde dat de lijn door `O` en het midden van `AB` loodrecht staat op `l` .

c

Beschouw nu het algemene geval van een cirkel met straal `r` , en een lijn die de cirkel snijdt in twee punten `A` en `B` . Bewijs met behulp van synthetische meetkunde dat de middelloodlijn van `AB` altijd door het middelpunt van de cirkel gaat.

verder | terug