Krommen in 2D > Hoeken
123456Hoeken

Voorbeeld 1

Bekijk driehoek `ABC` .
Laat zien hoe de hoeken berekend worden.

> antwoord

Begin met een assenstelsel in te voeren. Stel dat `A` de oorsprong is en dat de assen evenwijdig zijn aan de roosterlijnen. Lees de coördinaten af: `A(0,0)` , `B(4,2)` en `C(1,4)` .

De richtingscoëfficiënten van de lijnen `AC` , `AB` en `BC` , zijn respectievelijk `4, 1/2` en `text(-)2/3` .

De hellingshoek van lijn `AC` met de `x` -as is `arctan(4)~~76,0°` . Op dezelfde manier vind je de hellingshoeken van de andere lijnen. Met behulp van deze hellingshoeken, kun je de hoeken van de driehoek berekenen:

De hoek tussen de lijnen `AC` en `AB` is `arctan(4)-arctan(1/2)~~49,4°` , dit is ook de grootte van `angle A` .
Op dezelfde manier vind je dat `angle B=arctan(1/2)-arctan(text(-)2/3)~~60,3°` .
`angle C=180°-angle A-angle B~~70,3°`

Opgave 4

Bereken zelf in twee decimalen nauwkeurig de hoeken van de gegeven driehoek `ABC` in het voorbeeld.

Opgave 5

`angle C` is in het voorbeeld uitgerekend door gebruik te maken van de hoekensom van een driehoek. Je kunt deze hoek ook uitrekenen door de hoek tussen de lijnen `AC` en `BC` te berekenen. Laat zien dat je dan op dezelfde hoek uitkomt.

Opgave 6

Gegeven zijn de punten `A(text(-)1,2), B(3,4)` en `C(2,8)` . Bereken in twee decimalen de hoeken van driehoek `ABC` .

Opgave 7

Oefen als dat nodig is met andere driehoeken door in de applet de hoekpunten te verplaatsen.

verder | terug