Vectoren in 3D > Vectoren in 3D
1234567Vectoren in 3D

Voorbeeld 1

Figuur opent via muisklik
Dan draaibaar met rechter muisknop

Je ziet hier in een 3D cartesisch assenstelsel een balk met , en . De lijnstukken en snijden elkaar in punt .
Bereken de lengte van lijnstuk .

> antwoord

Deze lengte kun je eenvoudig meetkundig berekenen door rechthoek te tekenen en daarin de stelling van Pythagoras toe te passen. Je moet dan wel inzien, dat een rechthoek is en in een vlakke afbeelding van een ruimtelijke figuur zijn rechte hoeken niet altijd duidelijk. Rekenen met coördinaten en vectoren gaat daarentegen bijna altijd goed zonder rechte hoeken te herkennen.

Lees uit de figuur af dat , , en . Verder is het midden van bijvoorbeeld . (In een parallelprojectie zoals deze figuur zit elk midden van een lijnstuk ook echt in de figuur in het midden van dat lijnstuk.) En dus is .
Hieruit volgt .

En dus is de lengte van : .

Opgave 6

Bekijk het Voorbeeld 1.

a

Reken de coördinaten van na en bereken de lengte van .

is het midden van .

b

Bereken de lengte van .

c

Bereken de afstand van het midden van tot punt .

d

ligt op zo, dat .

Bereken exact de afstand tot punt .

Opgave 7

Bekijk de piramide in het Voorbeeld 1. ligt op zo, dat .
Bereken de afstand tot punt .

verder | terug