Vectoren in 3D > Lijnen en hoeken
1234567Lijnen en hoeken

Voorbeeld 1

Figuur opent via muisklik
Dan draaibaar met rechter muisknop

Je ziet hier een balk `OABC.DEFG` met `A(3, 0, 0)` , `C(0,2,0)` en `D(0, 0, 2)` . Verder is `M` het midden van `AB` en `N` dat van `AE` .

Stel een vectorvoorstelling op van lijn `DN` en van lijn `l` door `E` en evenwijdig met `DN` .

> antwoord

Lees eerst de coördinaten af: `D(0, 0, 2)` en `N(3, 0, 1)` . Bepaal vervolgens een steunvector en een richtingsvector:

  • steunvector: `vec(OD) = ((0),(0),(2))`

  • richtingsvector: `vec(DN) = ((3),(0),(text(-)1))`

Een vectorvoorstelling van lijn `DN` wordt dan: `((x),(y),(z)) = ((0),(0),(2)) + s*((3),(0),(text(-)1))`

De lijn door `E(3, 0, 2)` is evenwijdig met `DN` en heeft dus dezelfde richtingsvector.

Dus wordt een vectorvoorstelling van `l: ((x),(y),(z)) = ((3),(0),(2)) + t*((3),(0),(text(-)1))`

Je kunt ook een andere steunvector en richtingsvector nemen.

Opgave 6

In het voorbeeld zie je hoe je een vectorvoorstelling maakt van een lijn door twee gegeven punten.

a

Maak zelf een vectorvoorstelling van lijn `CM` .

b

Ga na dat punt `M` voldoet aan de vectorvoorstelling van `CM` .

c

Welk punt van `CM` heeft een `x` -coördinaat van 2?

d

Stel een vectorvoorstelling op van lijn `BD` .

Opgave 7

In het voorbeeld zie je hoe je een vectorvoorstelling maakt van een lijn door een gegeven punt en evenwijdig met een andere lijn.

a

Maak een vectorvoorstelling van lijn `m` door `F` evenwijdig met `CN` .

Voor elk punt in het `xz` -vlak geldt `y=0` .

b

Bereken het snijpunt van `m` met het `xz` -vlak.

c

Bereken de snijpunten van `m` met de twee andere coördinaatvlakken.

d

Laat zien dat `m` geen snijpunt met één van de coördinaatassen heeft.

verder | terug