Meetkunde in 3D > Vlakken
1234567Vlakken

Voorbeeld 3

Figuur opent via muisklik
Dan draaibaar met rechter muisknop

Gegeven is piramide met , , en .
is het midden van .
Bereken de coördinaten van het snijpunt van lijn en vlak .

> antwoord

Ga na dat

:

:
Met behulp van het uitproduct van beide richtingsvectoren vind je een normaalvector van vlak .
Een vergelijking van is .

Het punt is een willekeurig punt van lijn .
Dit punt ligt in vlak als het voldoet aan de vergelijking .
Dit betekent: . Je vindt: .

Het snijpunt van en is: .

Opgave 12

In het Voorbeeld 3 wordt het snijpunt van lijn en een vlak berekend.

a

Laat zien hoe je van vlak een vergelijking op stelt en bereken daarmee zelf dit snijpunt.

b

Je kunt dit snijpunt ook berekenen zonder een vergelijking van vlak te maken. Je kunt namelijk gewoon met beide vectorvoorstellingen werken.
Bereken ook op deze manier de coördinaten van het snijpunt.

c

Bereken het snijpunt van lijn en vlak .

d

Geef een voorbeeld van een lijn die vlak niet snijdt. Toon door berekening aan dat die lijn het vlak inderdaad niet snijdt.

Opgave 13

Gegeven is de lijn en het vlak

a

Bereken de coördinaten van het snijpunt van lijn en vlak door de vectorvoorstellingen aan elkaar gelijk te stellen.

b

Bereken de coördinaten van het snijpunt van lijn en vlak door gebruik te maken van een vergelijking van vlak .

verder | terug