Krommen en oppervlakken > Bollen en cilinders
123456Bollen en cilinders

Uitleg

Een bol is het oppervlak dat bestaat uit alle punten die een vaste afstand hebben tot een vast punt . heet de straal en het middelpunt van de bol.

Is het middelpunt van de bol dan geldt voor elk punt dat . En omdat en vind je
.
Dit is de vergelijking van een bol met middelpunt en straal .

Je kunt deze vergelijking (net als bij een cirkel) eenvoudig aanpassen voor het geval het middelpunt is. Het maken van een parametervoorstelling is wat lastiger. Net als bij de vectorvoorstelling van een plat vlak heb je twee parameters nodig.

Ook het cilinderoppervlak heeft een vergelijking en een parametervoorstelling.

Opgave 1

Bekijk de Uitleg 1. Je ziet een bol B met middelpunt O ( 0 , 0 , 0 ) en straal .

a

Welke van de volgende punten liggen op het boloppervlak, welke liggen er binnen en welke erbuiten?
A ( 2 , 2 , 1 ) , B ( 0 , 0 , -3 ) , C ( -2 , 1 , -2 ) , D ( 2 ; 2,5 ; -1 ) , E ( 8 , 0 , 1 ) , F ( -1,5 ; 1,5 ; 1,5 )

b

Bepaal a zo, dat G ( a , a , a ) op het boloppervlak ligt.

c

Voor welke waarden van a ligt G binnen de bol?

d

Aan welke vergelijking moeten de punten P ( x , y , z ) voldoen als P op de bol ligt?

e

Beschrijf de kromme die de doorsnede voorstelt van de bol met het vlak z = 0 . Doe hetzelfde voor z = 1 , z = 2 en z = 3 .

f

Beschrijf ook de doorsnede van de bol met het vlak y + z = 0 .

verder | terug