Exponentiële verbanden > Totaalbeeld
123456Totaalbeeld

Samenvatten

Groeiverschijnselen komen veel voor. Regelmatig is die groei - zeker gedurende een bepaalde periode - exponentieel. Dat wil zeggen er is sprake van een toename met een vast percentage per tijdseenheid. En zo bestaat er ook exponentieel verval.

De volgende opgaven zijn bedoeld om overzicht over het onderwerp Exponentiële verbanden te krijgen. Dit betreft de onderdelen 1, 2, 3, 4 en 5 van dit onderwerp. Het is nuttig om er een eigen samenvatting bij te maken. De opgaven hieronder zijn bedoeld om je daarbij te helpen.

Activiteitenlijst
Opgave 1

Lineaire of exponentiële groei?

a

Het aantal vlinders neemt jaarlijks met `1,01` % toe.

lineaire groei

exponentiële groei

b

De afstand van een vliegtuig tot de kust neemt toe met `1000` kilometer per uur.

lineaire groei

exponentiële groei

c

Jeannette breit een sjaal. Elk uur komt er `10` centimeter bij.

lineaire groei

exponentiële groei

d

Het aantal insecten neemt toe met `5` % per dag.

lineaire groei

exponentiële groei

Opgave 2

Welke groeifactor hoort bij het groeipercentage of omgekeerd? Geef exacte antwoorden.

a

groeipercentage `= 18,8` %

b

groeifactor `=1,032`

c

groeipercentage `=3,9` %  

d

groeifactor `=3,9`

e

groeipercentage `= 35` %

f

groeifactor `=1,04`

g

groeipercentage `=5,5` %  

h

groeifactor `=1,645`  

Opgave 3

In de beginperiode van een griepepidemie groeit het aantal ziektegevallen exponentieel. In een dichtbevolkte stad worden in de eerste week van februari `4623` ziektegevallen gemeld. Na een week zijn er `7166` ziektegevallen.

a

Hoe groot is de groeifactor per week? Rond af op twee decimalen.

b

Bereken het aantal ziektegevallen na twee weken.

c

Bereken het aantal ziektegevallen in de eerste week van maart als de ziekte zich in dit tempo uitbreidt.

d

Bereken de groeifactor voor een tijdsperiode van vier weken. Rond af op twee decimalen.

Opgave 4

Levende planten nemen uit de atmosfeer radioactieve koolstof C14 op. Als een plant sterft, verdwijnt de C14 langzaam uit de plant. Van fossiele planten kan de ouderdom worden bepaald door te meten hoeveel procent radioactieve koolstof is overgebleven.

Stel een formule op voor `C` (het percentage C14 dat overgebleven is) afhankelijk van de tijd `t` in periodes van `1000` jaar. Per millennium verliest de plant `1,2` % C14.

Opgave 5

Gegeven zijn de vergelijkingen `y_1=137*1,27^t` en `y_2 = 289 + 55*t`

a

Teken `y_1` en `y_2` in één assenstelsel en schat de oplossing van de vergelijking `y_1=y_2` .

b

Los de vergelijking op met een inklemtabel. Rond af op gehele waarden van `t` .

verder | terug